DeepSeek-Coder is a family of state-of-the-art code-focused language models developed by DeepSeek AI, available on Hugging Face. These models are optimized for code generation, understanding, and editing tasks and support a wide range of programming languages. Below is a guide to using DeepSeek-Coder via Hugging Face:
1. Model Access on Hugging Face
The models are hosted on Hugging Face Hub under the deepseek-ai
namespace. Example models include:
deepseek-ai/deepseek-coder-1.3b
deepseek-ai/deepseek-coder-6.7b
deepseek-ai/deepseek-coder-33b
Repository:
2. Key Features
- Multi-Language Support: Python, Java, C++, JavaScript, Go, Rust, and more.
- Long Context Handling: Up to 16K token context for large codebases.
- Code Generation: Generate code snippets, scripts, or entire functions from natural language prompts.
- Code Completion: Autocomplete code in real time.
- Code Understanding: Explain code logic, debug errors, or refactor existing code.
3. How to Use
Step 1: Install Dependencies
pip install transformers torch
Step 2: Load the Model
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "deepseek-ai/deepseek-coder-6.7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype="auto"
).cuda() # Use GPU if available
Step 3: Generate Code
prompt = "Write a Python function to calculate the Fibonacci sequence."
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256)
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_code)
4. Advanced Usage
Code Completion
Use the model to autocomplete partial code:
partial_code = "def factorial(n):\n if n == 0:\n return 1\n else:"
inputs = tokenizer(partial_code, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=100)
Chat Format (for Instruct Models)
For instruction-tuned models (e.g., deepseek-coder-6.7b-instruct
):
messages = [
{"role": "user", "content": "Write a quicksort algorithm in Python."}
]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)
outputs = model.generate(inputs, max_new_tokens=512)
5. Quantization (Reduce GPU Memory)
Use bitsandbytes
for 4-bit/8-bit quantization:
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
load_in_4bit=True, # or load_in_8bit=True
trust_remote_code=True
)
6. Applications
- IDE Plugins: Power autocomplete features in tools like VS Code.
- Code Review Automation: Identify bugs or security issues.
- Documentation Generation: Create comments or docs from code.
- Educational Tools: Teach programming interactively.
7. Performance
- Achieves top-tier results on benchmarks like HumanEval and MBPP.
- Outperforms similar-sized models (e.g., CodeLlama, StarCoder).
8. License
- Most DeepSeek-Coder models are licensed under Apache 2.0, allowing commercial and research use. Check the specific model card for details.
For full documentation and examples, visit the official Hugging Face repository: